Properties of Typical Bounded Closed Convex Sets in Hilbert Space

نویسنده

  • F. S. DE BLASI
چکیده

Baire category techniques are known to be a powerful tool in the investigation of the convex sets. Their use, which goes back to the fundamental contribution of Klee [17], has permitted to discover several interesting unexpected properties of convex sets (see Gruber [14], Schneider [23], Zamfirescu [25]). A survey of this area of research and additional bibliography can be found in [15, 27]. In the present paper, we consider some geometric properties of typical (in the sense of the Baire categories) nonempty bounded closed convex sets contained in a separable real Hilbert space. It will be shown in the typical case, for a closed convex and bounded set C and an integer m, that there is a dense subset D of the Hilbert space H such that the farthest point mapping generated by C is precisely m-valued at the points of D. A result of this type was recently obtained in [5], for typical nonempty compact convex sets. However, the approach of [5] cannot be adopted here for, in absence of compactness, the antiprojection mapping could have empty images. To overcome this difficulty we will use some ideas from [28], developed in the framework of the metric projections. Throughout, H(Ω) is a Hilbert space over the field of real numbers R whose elements are mappings x : Ω→Rwith countably many nonzero values and convergent sums ∑ ω∈Ω x2 ω. We often prefer to denote H(Ω) by H. It is assumed always in the paper that dimH(Ω) ≥ 2. As usual, the inner product and the norm are denoted by 〈·,·〉 and | · |. For a nonempty bounded set M ⊂H, the function f (x,M) = sup{|x− z| : z ∈M} is the farthest distance function, and the set-valued mapping

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials 

Introduction Let  be a nonempty subset of a normed linear space . A self-mapping  is said to be nonexpansive provided that  for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...

متن کامل

Fixed points for total asymptotically nonexpansive mappings in a new version of bead ‎space‎

The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...

متن کامل

Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces

This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main result is to    prove the strong convergence of the proposed implicit scheme to the unique solutio...

متن کامل

On fixed points of fundamentally nonexpansive mappings in Banach spaces

We first obtain some properties of a fundamentally nonexpansive self-mapping on a nonempty subset of a Banach space and next show that if the Banach space is having the Opial condition, then the fixed points set of such a mapping with the convex range is nonempty. In particular, we establish that if the Banach space is uniformly convex, and the range of such a mapping is bounded, closed and con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005